DAB labeling is present in presynaptic terminals surrounding synaptic vesicle structures. number of inclusions per animal, average number of inclusions per area (mean (SEM)) and average density (inclusions/mm3) (mean (SEM)) are shown for each mouse in rows 2-7. Group data is shown in row 8. 40478_2020_1026_MOESM2_ESM.docx (15K) GUID:?9DF0218B-9FBD-4D70-8219-33AA9C07283C Additional file 3: Table S3. Mean and SEM group data following Intramuscular PFF injection. A total of 8 A53T SynGFP mice were included in this analysis, with 3-4 animals per group. Regions of interest (ROIs) were determined for 12 groups consisting of 3 brain areas (cortex, midbrain, pons) in in two conditions (motor and control), at 2 timepoints (4 and 8 months4- and 8-months post-injection (mpi)). The number and location of the specific ROIs differed from mouse to mouse based on subtle variations in serial sectioning. The number of regions of interest (ROIs) analyzed, the mean, and SEM of the density of inclusions in each ROI (mm2) are included in columns 2-4. 40478_2020_1026_MOESM3_ESM.docx (12K) GUID:?B6DC964F-AA39-4476-8D9C-8A0F482BAE25 Additional file 4: Figure S1. Electron Micrographs and CLEM images show that A53T SynGFP localizes to presynaptic terminals in the striatum and cortex. a DAB/p-129 alpha-synuclein from the striatum of a SynGFP mouse. DAB labeling is present in presynaptic terminals surrounding synaptic vesicle structures. Scale bar 500?nm. b Inset from Fig. S1a demonstrating an example of DAB/p-129 alpha-synuclein labeled vesicles in a nerve terminal (NT) making an asymmetrical synaptic contact (arrow) onto an underlying dendritic spine (SP). Scale bar 500?nm. c Electron Microscopy (EM) image from CLEM processed tissue from the cortex of a SynGFP mouse. Scale bar 500?nm. d Inset from Fig. S1c showing two nerve terminals (NT) making asymmetrical synaptic contacts (arrows) onto a dendrite (DEND). Scale bar 500?nm. e The same EM image as Fig. S1c with an overlay of the fluorescent SynGFP signal captured from the same location using MAPS software creating a Correlated Light and Electron Microscopy (CLEM) image. SynGFP image localizes to vesicles in presynaptic terminals. Scale bar 500?nm. Rivaroxaban Diol f Inset from Rivaroxaban Diol Fig. S1e depicting a CLEM image of the same location shown in Fig. S1d with co-localization of the fluorescent SynGFP signal with vesicles in two nerve terminals (NT) making asymmetrical synaptic contacts (arrows) onto a dendrite (DEND). Scale bar 500?nm. 40478_2020_1026_MOESM4_ESM.pdf (4.6M) GUID:?41F595E3-248F-43FB-B5D2-6829F1680368 Additional file 5: Figure S2. PFF injection into Thy1-GFP transgenic mice does not induce GFP-positive Lewy pathology. a Top: PFF injection into A53T SynGFP Tg mice induces robust GFP-positive Lewy pathology 40?days post-injection that colocalizes well with the established Lewy marker pSyn. Bottom: PFF injection into GFP-only Tg mice induces less robust pSyn-positive Lewy pathololgy 4?months post-injection that does not colocalize well with GFP, demonstrating that it is composed of endogenous mouse alpha-synuclein. Scale bar 50?m. b Left: A single A53T SynGFP Lewy inclusion shown at different planes in the Z-axis. Middle: Inclusion from a GFP-only animal shown in similar fashion. Right: Group data of Igfbp5 Lewy pathology in A53T SynGFP Tg and GFP-only Tg mice, limited to neurons that express the respective transgene, shows a high level of colocalization between GFP fluorescence and pSyn only in A53T Syn-GFP animals (Pearsons coefficient: A53T SynGFP-pSyn 0.81??0.05%, GFP-pSyn: 0.25??0.06; unpaired test p? ?0.0001; N?=?3-5 cells/3 animals per group), demonstrating that even within neurons that have endogenous mouse alpha-synuclein inclusions and that express the GFP-only transgene, there is no incorporation of GFP into the inclusion. Scale bar 5?m. 40478_2020_1026_MOESM5_ESM.pdf (695K) GUID:?2D2D2E11-0101-4C86-B2A1-61ABDF9DFEE4 Additional file 6: Figure S3. Cortical Lewy pathology induced by PFF injection into A53T SynGFP mice is associated with cell death. a Left: WT mouse cortex at postnatal day 10, when developmental programmed cell death is known to occur, shows TUNEL positive cells with no aggregated pSyn Lewy pathology (positive control). Middle: A53T SynGFP cortex 40?days post-PFF injection shows TUNEL positive cells bearing somatic pSyn Lewy inclusions. Inset highlights example shown in yellow rectangle at higher magnification. Right: Uninjected A53T SynGFP cortex shows no TUNEL positive cells and no somatic Lewy pathology. Several nuclei are enriched with pSyn staining. Scale bar 50?m. b Group data showing percent of nuclei that are TUNEL positive in each group (P10-11: 0.87??0.41%, A53T SynGFP?+?PFF: 0.63??0.39%, A53T SynGFP: 0.0??0.0%; one-way ANOVA (F(2, 12)?=?7.035, p?=?0.0095), post hoc Tukey tests: P10-11 vs. Rivaroxaban Diol A53T SynGFP?+?PFF p?=?0.5153, P10-11 vs. A53T SynGFP p?=?0.0096, A53T SynGFP?+?PFF vs. A53T SynGFP p?=?0.0319; N?=?4-7 ROIs/2-3 animals per group). 40478_2020_1026_MOESM6_ESM.pdf (847K) GUID:?85725249-57A5-4180-9BDD-77E03CC3D646 Additional file 7: Figure S4. PFF but not monomeric alpha-synuclein injection into mouse brain induces Lewy pathology. a Monomer or PFF striatal injections were done in A53T SynGFP animals at 5-8?months-old, with sacrifice 9?months later (14-17?months old). Brain sections were processed for DAB immunohistochemistry, labeling pSyn-positive Lewy pathology. Top row: Monomer Rivaroxaban Diol injections showed.